Math 522 Exam 5 Solutions

1. Find the generating function for the sequence of squares $a_n = n^2$, i.e. $a_0 = 0^2, a_1 = 1^2, a_2 = 2^2, a_3 = 3^2, \dots$ [Hint: $n^2 = 2\left(\frac{n(n-1)}{2}\right) + n$]

Solution 1: We recall that
$$\frac{1}{(1-x)^3} = \sum_{n\geq 0} \binom{n+2}{2} x^n$$
, so $\frac{x^2}{(1-x)^3} = \sum_{n\geq 0} \binom{n}{2} x^n$,
and that $\frac{x}{(1-x)^2} = \sum_{n\geq 0} nx^n$. Set $A(x) = \sum_{n\geq 0} a_n x^n = \sum_{n\geq 0} n^2 x^n =$
 $= \sum_{n\geq 0} \left(2\binom{n(n-1)}{2} + n\right) x^n = 2\sum_{n\geq 0} \binom{n}{2} x^n + \sum_{n\geq 0} nx^n = 2\frac{x^2}{(1-x)^3} + \frac{x}{(1-x)^2}$.
If desired, this can be simplified: $A(x) = \frac{2x^2 + x(1-x)}{(1-x)^3} = \frac{x^2 + x}{(1-x)^3}$.

Solution 2: We begin with $\frac{x}{(1-x)^2} = \sum_{n\geq 0} nx^n$. Carefully aking derivatives of both sides, we get $\frac{1+x}{(1-x)^3} = \sum_{n\geq 0} n^2 x^{n-1}$. Multiplying both sides by x we get $\frac{x+x^2}{(1-x)^3} = \sum_{n\geq 0} n^2 x^n = \sum_{n\geq 0} a_n x^n$.

- 2. For all integers a, b, x, and p prime, prove that $1 \leftrightarrow (2a \vee 2b)$, i.e.:
 - 1. $(x-a)(x-b) \equiv 0 \pmod{p}$, if and only if
 - 2a. $x a \equiv 0 \pmod{p}$, or
 - 2b. $x b \equiv 0 \pmod{p}$.

BONUS: Show by counterexample that the above need not hold if p isn't prime.

 $1 \leftarrow (2a \lor 2b)$: Proof by cases; we first prove $1 \leftarrow 2a$. Starting with $x - a \equiv 0 \pmod{p}$, we use Thm. 4-2 and multiply by $(x - b) \equiv (x - b)$ to get $(x - a)(x - b) \equiv 0(x - b) = 0 \pmod{p}$. $1 \leftarrow 2b$ is similar; combining we get $1 \leftarrow (2a \lor 2b)$.

 $1 \rightarrow (2a \lor 2b)$: We assume $(x - a)(x - b) \equiv 0 = 0(x - a)$. Now, either $(x - a) \equiv 0$ (and we're done) or $(x - a) \not\equiv 0$. But in this case $p \nmid (x - a)$ and so gcd(p, x - a) = 1. We now use Thm. 4-3 to cancel (x - a) from both sides, so $(x - b) \equiv 0$.

BONUS: Take p = 25 (not prime), and a = b = 0. Then x = 5 satisfies $(x - a)(x - b) \equiv 0 \pmod{p}$, but $x - a \not\equiv 0 \pmod{p}$, and $x - b \not\equiv 0 \pmod{p}$.

3. High score=103, Median score=75, Low score=50