Math 522 Exam 5 Solutions

1. Find the generating function for the sequence of squares $a_{n}=n^{2}$, i.e. $a_{0}=0^{2}, a_{1}=$ $1^{2}, a_{2}=2^{2}, a_{3}=3^{2}, \ldots$ [Hint: $n^{2}=2\left(\frac{n(n-1)}{2}\right)+n$]

Solution 1: We recall that $\frac{1}{(1-x)^{3}}=\sum_{n \geq 0}\binom{n+2}{2} x^{n}$, so $\frac{x^{2}}{(1-x)^{3}}=\sum_{n \geq 0}\binom{n}{2} x^{n}$, and that $\frac{x}{(1-x)^{2}}=\sum_{n \geq 0} n x^{n}$. Set $A(x)=\sum_{n \geq 0} a_{n} x^{n}=\sum_{n \geq 0} n^{2} x^{n}=$ $=\sum_{n \geq 0}\left(2\left(\frac{n(n-1)}{2}\right)+n\right) x^{n}=2 \sum_{n \geq 0}\binom{n}{2} x^{n}+\sum_{n \geq 0} n x^{n}=2 \frac{x^{2}}{(1-x)^{3}}+\frac{x}{(1-x)^{2}}$. If desired, this can be simplified: $A(x)=\frac{2 x^{2}+x(1-x)}{(1-x)^{3}}=\frac{x^{2}+x}{(1-x)^{3}}$.

Solution 2: We begin with $\frac{x}{(1-x)^{2}}=\sum_{n \geq 0} n x^{n}$. Carefully aking derivatives of both sides, we get $\frac{1+x}{(1-x)^{3}}=\sum_{n \geq 0} n^{2} x^{n-1}$. Multiplying both sides by x we get $\frac{x+x^{2}}{(1-x)^{3}}=\sum_{n \geq 0} n^{2} x^{n}=\sum_{n \geq 0} a_{n} x^{n}$.
2. For all integers a, b, x, and p prime, prove that $1 \leftrightarrow(2 a \vee 2 b)$, i.e.:

1. $(x-a)(x-b) \equiv 0(\bmod p)$, if and only if

2 a. $x-a \equiv 0(\bmod p)$, or
2 b. $x-b \equiv 0(\bmod p)$.
BONUS: Show by counterexample that the above need not hold if p isn't prime.
$1 \leftarrow(2 a \vee 2 b)$: Proof by cases; we first prove $1 \leftarrow 2 a$. Starting with $x-a \equiv 0(\bmod p)$, we use Thm. 4-2 and multiply by $(x-b) \equiv(x-b)$ to get $(x-a)(x-b) \equiv 0(x-b)=0(\bmod p)$. $1 \leftarrow 2 b$ is similar; combining we get $1 \leftarrow(2 a \vee 2 b)$.
$1 \rightarrow(2 a \vee 2 b)$: We assume $(x-a)(x-b) \equiv 0=0(x-a)$. Now, either $(x-a) \equiv 0$ (and we're done) or $(x-a) \not \equiv 0$. But in this case $p \nmid(x-a)$ and so $\operatorname{gcd}(p, x-a)=1$. We now use Thm. 4-3 to cancel $(x-a)$ from both sides, so $(x-b) \equiv 0$.

BONUS: Take $p=25$ (not prime), and $a=b=0$. Then $x=5$ satisfies $(x-a)(x-b) \equiv 0(\bmod p)$, but $x-a \not \equiv 0(\bmod p)$, and $x-b \not \equiv 0(\bmod p)$.
3. High score $=103$, Median score $=75$, Low score $=50$

